Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Eur J Med Chem ; 256: 115474, 2023 Aug 05.
Article in English | MEDLINE | ID: covidwho-2315252

ABSTRACT

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.


Subject(s)
COVID-19 , Methyltransferases , Humans , Methyltransferases/metabolism , Adenosine/pharmacology , Pandemics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , S-Adenosylmethionine , RNA, Viral/genetics , Adenine
3.
Antiviral Res ; 204: 105364, 2022 08.
Article in English | MEDLINE | ID: covidwho-1894784

ABSTRACT

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Subject(s)
Antiviral Agents , Arenavirus , Exoribonucleases , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Arenavirus/drug effects , Chlorocebus aethiops , Exoribonucleases/antagonists & inhibitors , Fluorescence Polarization , SARS-CoV-2/drug effects , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors
4.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1867997

ABSTRACT

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , COVID-19/virology , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/chemistry , Humans , Methyltransferases , Molecular Docking Simulation , RNA, Viral/genetics , S-Adenosylmethionine , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
5.
J Virol ; 96(8): e0012822, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765079

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Furin/metabolism , HeLa Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
6.
Viruses ; 12(6)2020 06 25.
Article in English | MEDLINE | ID: covidwho-1726024

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has highlighted the importance of reliable and rapid diagnostic testing to prevent and control virus circulation. Dozens of monoplex in-house RT-qPCR assays are already available; however, the development of dual-target assays is suited to avoid false-negative results caused by polymorphisms or point mutations, that can compromise the accuracy of diagnostic and screening tests. In this study, two mono-target assays recommended by WHO (E-Sarbeco (enveloppe gene, Charite University, Berlin, Germany) and RdRp-IP4 (RdRp, Institut Pasteur, Paris, France)) were selected and combined in a unique robust test; the resulting duo SARS-CoV-2 RT-qPCR assay was compared to the two parental monoplex tests. The duo SARS-CoV-2 assay performed equally, or better, in terms of sensitivity, specificity, linearity and signal intensity. We demonstrated that combining two single systems into a dual-target assay (with or without an MS2-based internal control) did not impair performances, providing a potent tool adapted for routine molecular diagnosis in clinical microbiology laboratories.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , World Health Organization
7.
EMBO Rep ; 23(5): e53820, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1726972

ABSTRACT

Engineering recombinant viruses is a pre-eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on "infectious subgenomic amplicons" (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS-CoV-2 and also to the feline enteric coronavirus. In both cases we rescue wild-type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS-CoV-2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS-CoV-2 variants, and to accelerate the development of effective therapeutic reagents.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/genetics , Cats , Reverse Genetics , SARS-CoV-2/genetics
8.
Anal Chem ; 94(2): 975-984, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1592056

ABSTRACT

Serological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL-1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
9.
iScience ; 24(11): 103329, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1474646

ABSTRACT

Since the beginning of the COVID-19 pandemics, variants have emerged. Some of them display increased transmissibility and/or resistance to immune response. Most of the mutations involved in the functional adaptation are found in the receptor-binding motif (RBM), close to the interface with the receptor ACE2. We thus developed a fast molecular assay to detect mutations in the RBM coding sequence. After amplification, the amplicon is heat-denatured and hybridized with an amplicon of reference. The presence of a mutation can be detected using a mismatch-specific endonuclease and the cleavage pattern is analyzed by capillary electrophoresis. The method was validated on RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants produced in vitro before being implemented for clinical samples. The assay showed 97.8% sensitivity and 97.8% specificity. The procedure can be set up for high-throughput identification of the presence of mutations and serve as a first-line screening to select the samples for full genome sequencing.

10.
Nat Commun ; 12(1): 1735, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1387332

ABSTRACT

Despite no or limited pre-clinical evidence, repurposed drugs are massively evaluated in clinical trials to palliate the lack of antiviral molecules against SARS-CoV-2. Here we use a Syrian hamster model to assess the antiviral efficacy of favipiravir, understand its mechanism of action and determine its pharmacokinetics. When treatment is initiated before or simultaneously to infection, favipiravir has a strong dose effect, leading to reduction of infectious titers in lungs and clinical alleviation of the disease. Antiviral effect of favipiravir correlates with incorporation of a large number of mutations into viral genomes and decrease of viral infectivity. Antiviral efficacy is achieved with plasma drug exposure comparable with those previously found during human clinical trials. Notably, the highest dose of favipiravir tested is associated with signs of toxicity in animals. Thereby, pharmacokinetic and tolerance studies are required to determine whether similar effects can be safely achieved in humans.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Pyrazines/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Genome, Viral , Lung/virology , Mesocricetus , SARS-CoV-2/genetics , Vero Cells , Viral Load/drug effects
11.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: covidwho-1143539

ABSTRACT

A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 µM, without significant cytotoxicity (IC50 = 66.4 µM in HepG2 cells, IC50 = 43.1 µM in HepG2 cells) at 10 µM.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Azo Compounds/chemistry , Nucleosides/chemistry , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Alkenes/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , HIV-1/drug effects , Hepatitis B virus/drug effects , Humans , Magnetic Resonance Spectroscopy , Methylation , SARS-CoV-2/drug effects , Structure-Activity Relationship , Triazoles/chemistry , Vero Cells
12.
Biopreserv Biobank ; 18(6): 561-569, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-919312

ABSTRACT

When a new virus emerges and causes a significant epidemic, the emergency response relies on diagnostics, surveillance, testing, and proposal of treatments if they exist, and also in the longer term, redirection of research efforts toward understanding the newly discovered pathogen. To serve these goals, viral biobanks play a crucial role. The European Virus Archive (EVA) is a network of biobanks from research laboratories worldwide that has combined into a common set of practices and mutually beneficial objectives to give scientists the tools that they need to study viruses in general, and also to respond to a pandemic caused by emerging viruses. Taking the most recent outbreaks of the Zika virus and SARS-CoV-2 as examples, by looking at who orders what and when to the EVA, we illustrate how the global science community at large, public health, fundamental research and private companies, reorganize their activity toward diagnosing, understanding, and fighting the new pathogen.


Subject(s)
Biological Specimen Banks , COVID-19 , Pandemics , SARS-CoV-2/metabolism , Zika Virus Infection , Zika Virus/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Europe/epidemiology , Humans , Zika Virus Infection/epidemiology , Zika Virus Infection/metabolism
13.
Nat Commun ; 11(1): 4682, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-779999

ABSTRACT

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/genetics , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pyrazines/pharmacology , Amides/pharmacokinetics , Animals , Antiviral Agents/pharmacokinetics , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Models, Molecular , Mutagenesis/drug effects , Pandemics , Pneumonia, Viral/virology , Pyrazines/pharmacokinetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Sequence Analysis , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , COVID-19 Drug Treatment
14.
Rev Med Virol ; 30(6): 1-10, 2020 11.
Article in English | MEDLINE | ID: covidwho-707429

ABSTRACT

The health emergency caused by the recent Covid-19 pandemic highlights the need to identify effective treatments against the virus causing this disease (SARS-CoV-2). The first clinical trials have been testing repurposed drugs that show promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400 clinical trials are already under way, the actual number of tested compounds is still limited to approximately 20, alone or in combination. In addition, knowledge on their mode of action (MoA) is currently insufficient. Their first results reveal some inconsistencies and contradictory results and suggest that cohort size and quality of the control arm are two key issues for obtaining rigorous and conclusive results. Moreover, the observed discrepancies might also result from differences in the clinical inclusion criteria, including the possibility of early treatment that may be essential for therapy efficacy in patients with Covid-19. Importantly, efforts should also be made to test new compounds with a documented MoA against SARS-CoV-2 in clinical trials. Successful treatment will probably be based on multitherapies with antiviral compounds that target different steps of the virus life cycle. Moreover, a multidisciplinary approach that combines artificial intelligence, compound docking, and robust in vitro and in vivo assays will accelerate the development of new antiviral molecules. Finally, large retrospective studies on hospitalized patients are needed to evaluate the different treatments with robust statistical tools and to identify the best treatment for each Covid-19 stage. This review describes different candidate antiviral strategies for Covid-19, by focusing on their mechanism of action.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Combined Modality Therapy , Disease Management , Disease Susceptibility , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , Treatment Outcome
15.
Sci Rep ; 10(1): 13093, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-697117

ABSTRACT

A novel coronavirus, named SARS-CoV-2, emerged in 2019 in China and rapidly spread worldwide. As no approved therapeutics exists to treat COVID-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time-consuming stages of drug development. In this study, we screened the PRESTWICK CHEMICAL LIBRARY composed of 1,520 approved drugs in an infected cell-based assay. The robustness of the screen was assessed by the identification of drugs that already demonstrated in vitro antiviral effect against SARS-CoV-2. Thereby, 90 compounds were identified as positive hits from the screen and were grouped according to their chemical composition and their known therapeutic effect. Then EC50 and CC50 were determined for a subset of 15 compounds from a panel of 23 selected drugs covering the different groups. Eleven compounds such as macrolides antibiotics, proton pump inhibitors, antiarrhythmic agents or CNS drugs emerged showing antiviral potency with 2 < EC50 ≤ 20 µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study provides information for the selection of drugs to be further validated in vivo. Disclaimer: This study corresponds to the early stages of antiviral development and the results do not support by themselves the use of the selected drugs to treat SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Small Molecule Libraries/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Approval , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL